and Chapman gives much simpler approximate forms, derived for st/N_~>10.

The work covered in this report had been substantially completed when
inconsistencies in certain results* led to a check of the simplified formulas
for bias and dispersion, It was discovered that certain approximations used
in deriving the formulas introduced serious error unless N, s and t were
actually very large numbers; the condition —SNE large was not sufficient.
Table 1 lists 3 cases, for all of which st/N = 13, 33, giving percent error in
the original approximation formula for E(No). Clearly the error decreases
as the magnitudes increase. The mean-squared error formula shows an

even larger deviation,

(st/N = 13, 3) % error in
approximate
N, s, t formula for E(No)
30, 26, 20 T,
270, 60, 60
3000, 200, 200 Ee ]

Table l. Percent error in first approximation formula for E(No)
for several examples with st/N=13, 33
The figure for bias resulting from the approximate formula was, for
small N, not much larger than the error, indicating that both bias and dis-

persion might actually be considerably lower than appeared. Consequently,

There were actually 2 sources of inconsistency, Since Chapman's ap-
proach did not apply in the multi-trial case (Sec. 6) another approach was
used and a new formula derived which, with the number of trials reduced
to one, should have given about the same result as was obtained with
Chapman's formula. However, the figures for dispersion in the example
tested were far different. The second inconsistency was noted when com-
parison was made with some specific cases in a tabulation containing
means and variances computed directly from probabilities [4].
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it was necessary to derive sccond-order approximations for bias and mean-
squared error which would be more accurate than Chapman's first-order ap-
proximations but still simipler than the exact expressions. Such approxima-
tions would permit quick calculation, provide insight into the manner in which
bias and dispersion change with changing parameter values, and facilitate

comparison with other estimates.

Two sets of bias and mean-squared error formulas were obtained, one
using the method applied by Chapman but eliminating the offending approxi-
mations, and the other based on a Taylor's series expansion of %t . The
first derivation is described in Appendix 1 and the second in Appendix 2,
The Taylor's series approach was initially applied to find the mean and
dispersion of estimates based on several data values (sce Sec, 6), a prob-
lem to which the Chapman method is not applicable, Although such was not
their raison d'étre, the resulting formulas can be used to verify the calcula-
tions for No as well.

On the basis of the new approximations, additional interesting informa-
tion was obtained on the manner in which bias and mean-squared error
change with the parameters, information which would be useful in designing

an actual estimation effort,

4,3 Bias
The new approximation for the expected value of No derived from

Chapman's exact result is

REIE Ly iy Sag Seg T S Tia ) (1)
where N+
@) =G+ 6+ 1)
- N+d .
" %1 (s+i)(t+i)’1“2’3’“-
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i The requirements for accuracy (see Appendix 1) are the following:

1. Enough terms must be included in the sum, which is a truncated
version of an infinite sum, to leave the remainder insignificant. Four or
five terms have been found sufficient.

2. The probability that ¢=0 must be very small. By referring to

i Tt e —

the examples of hypergeometric distribution in Fig. 1, one sees that this

occurs when the peak is far from 0, i.e., when the mean of the distribution,

st/N, is large. In fact, common sense tells us that large samples are

almost certain to have elements in common; i.e., P(0)= 0. st/N > 3 seems

R e

-

to be sufficient for accuracy unless N is very large (in which case the vari-

ance of the distribution and therefore Po is large).

Py P =

An alternative form of Eq. (1), derived by simple manipulations (see

Appendix 1) is:

]
i 2, N N .2 N m-1
: E(N)= N[k, +k, (gp) + 2ky ()" +... + (m-1)1k () ] (la)
i
” 1+ 1/N
| where &y = ¥ el (14 175
k; =k LS /N =2,3,...

l i~ %-1 (T+i/s) 1 +i/t) * *
J The quantities ki are close to 1 and increase to 1 as a limit as s, t and N
increase. If we set all ki=l’ we arrive at Chapman's approximate formula

B N N_2
E(No)—N[l+(st)+2( | . PP

st

A method described in [5] for deriving the expected value of a function

A ot M s

of a random variable by means of a Taylor's series expansion was applied (see

Appendix 2) leading to
- N 2 N 2
ENJ=N[Teg (<5 i+39™ (=511 (2)

;

where q = -J—(—MS)ZN-t
N
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This is subject to the same caveat as Eq. (!): truncation effect and
t

Po;é 0 are possible sources of error. Both tend to show up for small ; .

Zlf.",

9 and for large values of N, s, t, i.e., values for which min (s,t)> >

The bias, b, of an estimate N is defined by E(N) = N + b, The quantity

of greatest interest is the ratio % (or percent bias = bﬁ x 100%) since to

estimate N=100 as N=120 is clearly a grosser error than to estimate

T

N=1000 as 1020.

S T

21 -

-

The percent bias of No varies in 3 different ways: (1) with size of

tagged and sampled sets relative to total number of errors, quantified by

e

t
;
é

the ratio % : {2) with the total number of errors N; and (3) with size of

: : s o s
sampled set relative to size of tagged set, T The nature of each variation,

s

e iadl wial

with the other 2 sources held constant, is considered next.

A

b £ . s
1. = decreases as N increases, for N and — constant,

N t

The consistency of the estimate, shown by Chapman, implies that this

is so in the limit. For finite N, s and t, Eq. (la) shows that variation in

—— s — -k

E(No), with N constant, depends principally con the ;N? factors. While the
1 ki factors increase with increasing s and t, all are less than and close to

1 and vary very little over large changes in s and t. (See Fig. 2(a)).

|5 ik L st S ot
Pt N increases with N for ?\T and ry fixed.

In this case, the only variation in P)(NO) is with the quantities ki (see

Eq. (la)) which increase with increasing N under the given conditions.

The common upper limit of the ki's is 1 which occurs only for infinite s, t

+ AR TPETN, VORI D il A o A

and N, Chapman's formula, which results if all ki = 1, therefore gives an

upper limit to the bias ratio, holding for very large N, (See Fig. 2(b)).
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FIG. 2, VARIATION WITH SEVERAL PARAMETER RELATIONS OF PERCENT
BIAS OF ESTIMATE No'
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FIG. 2. (B) AND (D) . (Continued)
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3. Feor -IS\I—t and N fixed, l%is greatest when — = 1.

Gl 1]

For SK" and N fixed, the product st is fixed, and £ = I implies

s =t =Jst . We can show (see Appendix 4) that

1 +i/N < 1+i/N
(L +ifa) (L +ifty — (1+i/J-s—t)2

from which it follows that ki' and therefore b/N, are maximum for s =t.
(See Fig. 2(c).)

The first property states the unsurprising fact that, given a particular
program, large samples produce accurate estimates. The third property
says that if, in addition, we make s and t unequal, we increase the accu-
racy of NO still more. However in both cases, the increased accuracy is
paid for in time: larger sets of errors take longer to find, and s +t in-
creases as f departs from 1.

The second property says that under the same conditions of sﬁt and f—
we get better results for programs with fewer errors, e.g. by estimating N
after some debugging has been done. However, as N increases, keeping Is\Tt

constant requires relatively smaller samples. For N=1000, for example,

st
N

with s =t=50, That is, in the second case, 100 bugs must be found while in

s=t=100 gives %\% = 10, while for N=250, we get the same value of

the first, with N four times as large, only 200, or twice as many bugs must

be found. If we spend the same time relative to N and find 400 bugs in the

first case, we increase Sﬁt- by a factor of 2 and decrease bias considerably.

To sum up the argument, if we keep the debugging time, as measured by

VO R a

s tt, proportional to N, then N has smaller bias for large N. (See Fig.

¢
H
l‘:’
‘ (2d). )
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4.4 Mean-squared Error

New approximate formulas for V(No), the variation about the true value

N, were derived using Chapman's method (Appendix 1) and the Taylor's

series method (Appendix 2). They are respectively,

st

t t
+ [-Zal+(%—-2)a2+(sﬁ-4)a3 T

V(N,) = N 1+

(3)

c+{a_ B2 m-Die ]}

St i il S

) where the a's are defined as in Eq. (1)

1 and
; m-1 1
: Bn-18 -1t ¥
j=1
b 2 2
V(N_) = N% [q(N/st) + 9a° (N/st)’ ] @)
!
& where q is defined as in Eq. (2).
{ An alternative form for Eq. (3) is
: 2
~ N? N N
V(N ) =N [+ ky - 2k)) + (3k,; - 2k,) o+ (11k, - 4k, )C3) +...
(3a)
1 N m-2
‘.J Ak _-2m-2)tk )™ 7]
3 where the k's are defined as in Eq, (la),
¥
: The formulas hold under the same conditions as the mean formulas:
H
E Po = 0, and low truncation error. Furthermore the same generalizations
{

can be made with respect to the variation of V(No) with N, s, t.

» S RETN
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5.0 Modified Maximum Likelihood Fstimate l\‘l

5.1 Bias and Mean-squared Error

e An intermediate result in Chapman's derivation of E(No),
| N-s-t >
1. N4l Hil "o T SKZE

E(c+l)'(s+1) (t+1) (1-K), where K =

0 otherwise

suggests the modified estimate

<
E N1= s+lc+r+l oy
‘ as a means of reducing the bias to practically zero assuming Po = 0. For
i E(Nl)=(s+l)(t+l)E(CTl]) - 1= (N+1) (1-K) - l
E(Nl) = N-K(N+1) where K=0 if PO:O
..‘, P E(Nl)zN .
{
3 : The bias is negative but very small even for small -;Tt . Consider for
; example, the case N=6, s=2, t=3, with _Is\x_t = 1, E(Nl), computed exactly,
is 5.8, and b/N is 3.3% whereas E(N_) is 6.6 with b/N = 10%.
4 However, for Nl as for No’ b/N increases if st/N is held fixed but N ~
J increases. If N=20, s=4, t=5, sﬁt is still 1 but E(Nl) is now 16, 9 and
: b/N = 15, 5%, 1
s : An additional advantage of Nl is the fact that its variation about N is ;
: ; somewhat lower than V(No) for N greater than about 50. Below 50, V(No) ;

is smaller. The second-order approximation for V(Nl)’ under the same

approximation rules as E(No) and V(No) is (see Appendix 1)

» NREARETN ¥

e 2 2 , 2
VN =(s+ D7+ 1) [ay to g+ 20, +bag 4. +(m-2)ta_]- (N+1) (5)
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or

% 2 2 N .2 2 N N .2
V(Nl)— (s+1)° (t+1) (——-st ) [(kZ -kl )+k3 (—-—-St )+2k4(_st) +.0.
(52)

sm-2) k(o)™

Some comparative figures for No and Nl are shown in Table 2 and in

Table 3 of Section 6. 3. The variation of UP(NI)/N with relations among the

parameters, as described in detail in Sec. 4.3, is plotted in Fig. 3.

5.2 Useful Range

It is obviously possible to make accurate and precise estimates with

large enough samples; the limiting case of s=t=N produces a perfect esti-

mate. Whether a good estimate can be made with considerably smaller

samples is the issue. Nl has almost no bias so the major problem resides
As

in the variance (which, for zero bias, equals the mean-squared error).

Eq. (5) and Fig. 3(a) show, the variance is low for the ratio st/N large

enough. But large ratios can be attained with relatively small samples only

for N large. For N=3000, for example, st/N=13,33 can be realized with

s=t=200, or one-fifteenth of N; but for N =30, st/N=13, 33 requires
s=t=20, two-thirds of N. Fortunately, Fig. 3(b) shows that smaller

values of st/N are required to give a specified value of ue/N at the

30-error level than at 3000. The EI%E = 1.0 curve in Fig, 3(d) shows the

minimum value of cre/N which can be attained if we limit s and t to half of

If we are willing to accept larger samples, we can, of course, do better

For the same

N.

for the smaller values, Larger samples mean more time.

time relative to N, estimates of larger programs will have lower -Ue/N

(Fig. 3(d)). Curves such as those of Fig. 3 can be exploited to design an

estimation test with knowledge of the trade-off between time and precision.
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N = 270 §§= 13, 33
s = 60

£ = 60
¢ N_ N,
9 400 371
10 360 337
11 327 309
12 299 285
13 276 265
14 257 247
15 239 232
16 224 218
17 211 206
18 199 195

Table 2. Comparison of N0 and N

1

experimental results: - one example.
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5.3 Design of a Seeding/Tagging Reliability Test

The procedure is very simple. Our objective is to pick values for s
and t which will be likely to produce an estimate of the quality we want,
We begin with a ballpark estimate of the number of errors in the program,

based on whatever information we have — length of program, amount of pre-

vious debugging, experience with other programs of the same type, exper-
tise of programmers. Suppose we decide that there are probably about 150 i
errors. In that event Nl is the preferred estimate since it is practically ‘
unbiased and has a lower V than No in that range. Had the estimated N
been below 50 we would have had to check the bias and dispersion of Nj
and then choose between No and Nl'

We will be content with e = 30. Then cre/N =0.2 and from Fig. 3(b) we
find that the intersection of 150 and 0.2 is onthe curve for SNL-E 13. 33, (If
Fig. 3(a) contained a curve for N =150, we could have found the same infor-
mation there.) Then st=13,33x150=2000. We can let each debugger find
about 45 errors, or let one find 50 and the other 40. Fig. 3(c) shows qual-
itatively that the results will be about the same. We can also let s and t be,
say 20 and 100 and expect a somewhat smaller T but we will have to wait
considerably longer for the results.

The cost beyond that for the debugging which would have to be done any-
way would be identical for all choices since the additional cost is only for
the common bugs and the expected number of those is -;Tt= 13, 35,

The situation would be a little different if the program were not to be

completely debugged. The test could, for example, be a means of compar-

ing different programming techniques. In that case, it would not only take

longer but would also be more expensive to find 120 bugs than to find 90.
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6.0 Multi-Trial Estimates

6.1 Advantages
We have up to now been discussing an estimation process involving two
debuggers. Suppose we use 3 or more and consider the output of each pair
to be a separate result; m debuggers will give n=-r£(x}21-—ll possible data
values which can be combined to provide a new estimate with the following
possible advantages:
1. reduced integer c¢rror

2. reduced variance, or

3. smaller samples and less debugging time for the same variance.

6.1.1 Integer Error

It was noted in Section 3 that in any seeding/taggirg calculation an
error arises from the fact that ¢ is an integer, assuming one of only
min(s, t)+ 1 values. Any estimate, it follows, must also have one of only so
many values despite the fact that N may actually be an integer from
max(s, t) to infinity., This is particularly bothersome when the numbers are
relatively small. With a population of, say, 104 and s=t= 1000, data
values ¢ =100 and ¢ =99 lead to maximum likelihood estimates of 10, 000
and 10, 101 respectively,a difference of only 1% of the true population. But
with a population of 100 and s =t =25, data values c=6 and 7 respectively
provide estimates of 104 and 89, a span of 15%, with no possibility that any
value obtained with the given estimate will fall within the range. The differ-
ence at the center of the distribution is of the order of -Sl\itx 100% of N.
Values of ¢ further away from the mean will lead to even larger separations

¢=4 and 5 for example give N°= 156 and 125 respectively, a difference of

o~
n
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319% of N. These are not improbable values; 4 is about 1 standard deviation
away from the mean of the distribution.

Integer error is automatically reduced when several data values are
used, whether the averaging is done on the data values themselves, or on
the several estimates derived from the individual data values. In the last
example, for instance, using 4.5, the average of c= 4 and c=5, in the
maximum likelihood formula gives an estimate of 138, while averaging the
values of N0 obtained with ¢ =4 and 5 gives No= 140, Either way, values
are possible which cannot be obtained from a single trial, and increasing the
number of trials increases the number of new values. More in-between
values are likely to occur if the final estimates rather than the data are
combined — the average of c=4 and 6 is not a new value, for example,
while the nonlinearity of the estimates makes repeats when estimates are
averaged improbable — but such estimates may be less desirable for other

reasons.

6. 1.2 Variance and Mean-squared Error

We can reasonably expect some reduction in variance in a multi-trial
process regardless of the estimate formula. However, the bias of the new
estimate as well as the degree of improvement in variance do depend on the
formula.

One combining mode is to compute an estimate for each data value,
using any single-trial formula, and average the resulting n single-trial

seste

estimates. Then var(average) =;11-var(each)*. However V=var+ (biaS)z.

%» If m debuggers are used, the n = m (m-1)/2 possible data values are not
statistically independent and the variance relationship is not exactly true.
However, to avoid complications assume the n values are approximately
independent, or consider that n truly independent tests are made with 2n
debuggers.

#* See Appendix 4
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Therefore the reduction in V for a multi-trial estimate found in this way

depends on the change, if any, in bias as well as in variance.

n
Alternatively, we can average the n values of c¢ getting ¢ =} <, and
i=1
replace ¢ by ¢ in any single-trial estimate formula, Although

V(Z)=var(€)=%

var (c), the effect of the replacement is not obvious and
must be examined anew for each formula.

Taking another point of view, we can trade reduced variance for a
quicker estimate by reducing s and t. Since V varies more or less in-
versely with the product st (Eq. (3a)), having tagged and sampled sets of
size —;— and -—;— respectively for an n-trial estimate will keep the variance
of the n-trial estimate approximately equal to that of the corresponding
single-trial estimate using sets of size s and t. Smaller samples mean
less time. The time saving may be more than proportional to the reduction
in s and t since errors probably becomes progressively harder to find as
the total number remaining decreases. That is, it takes longer for one
debugger to find 50 errors than for 2 to find 25 each, starting with the pro-
gram in the same state. However, choosing time-saving in preference to
reduced va‘riance would, if the estimate is biased, increase the bias which
also varies as s_lt (Eq. (la)).

It might also be borne in mind in contemplating multi-trial estimating
that the multiple debugging is not all wasted; each debugger added to the

process finds errors others do not find, thereby contributing to the neces-

sary over-all debugging of the program.

6.2 Averaging Single-trial Estimates: N—o and _1\71

Let the estimate No be the average of n maximum-likelihood estimates
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associated with n independent experimental values T el 20 e
n n
= 15 0 st
N 5= ) N .z ==
o n L O C.
i=1] =1 =]

Although the variance would be reduced by the expected factor of }1, the
bias would remain unchanged: E(—N_o)= E(No), so V would be reduced by

less than the variance.

V(ﬁo) = var (T\I'o) P

=d var (N ) + b2

n (o]

L gl

=1 [V(N) -b%]+b ’

|~

2
= [V(N_) + (n-1)b"]

& Ao el o #
(6] n

5=

If the bias is large, therefore, V(No) may be considerably greater than
1
& V(No). In view of the almost zero bias of N1 for S;t >3 and N not too i

large, it would make more sense to average Nl:

Nl=

B

n
L
i-1

Here,

E(ﬁl) =E(N))= N

V(Nl)z V(N))

B

6.3 Averaging Data Values: _ﬁo and ﬁl

Define estimate ﬁo by
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where c¢ =

Z)
e |‘£

Since a single s appears in the formula for No’ all samples must have the

same size. This implies that s =t; No can therefore be written sZ/_c_.

The bias and variance of ﬁo and Nl were found directly from the bias
and variance of NO and Nl, the original computation of which was based on
certain expansions of the reciprocal of a random variable with hypergeomet-
ric distribution., The same method cannot apply to ﬁo because c is not
hypergeometric.

However ve can use the Taylor's series method mentioned in Section

4. 3. The results (see Appendix 2) are

= N = -
E(N0)=N[l+§(;)+39—2—(§) ] (6)
n
i 2 2
VE) =N 2 Sy e (B (M
n

Setting n=1 reduces No to No‘ Because of the factors ;1 and -lz 4

E(ﬁo) < E(No) which equals E(_ﬁo). Similarly, because of the -—12 factor
V(ﬁo) < -I% V(NO) <¢ V(T\TO). The conclusion is that ﬁo is a bette rnestima.te
than No’ as the example in Table 3 shows.

Finally we mention the estimate ﬁl having the form of Nl’ but with ¢

replacing c. Its bias and variance can be derived in the same way as those

of No. Mean and mean-squared error formulas for the estimates consid-

ered are collected in Table 4.
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Example
st _
N = 270 < 13. 33
s = 60
t = 60 n = 3
N N N N N N N
o o o o 1 1 o
E( ) 274 284 284 284 270 270 284
v( ) 1253 1683 | 4658 4519 3605 1202 1637
cre( ) 35. 4 41,0 | 68.3 67.2 60.0 | 34.7 40.5
A& I\ _J
. Taymeries Non-Taylor's series
calculations calculations
Table 3. Comparison of mean and dispersion of single- and

multi-test estimates for one example.
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Estimate E( ) LS
o aE 2y, st st
1. N =& st[al+az+203+...+(m-l)!arn] N 1+N[2a1+(N 2)ayt..
st
+{Am_1(N)-2(m-I)!}am](
- _ (sEl)(tt1) 2 2
2. Nl- " 1| N (s+1) (t+1l) [a2+a3+2a4+...
2
: +(m-2)!am]-(N+1)
n
: 3, Nas 3 N, E(N_)=N+b v +-1b?]
: (o] ni=1 o1 o) n
i
4 TN, N v
170 g i n 1
2 2 2 2
¢ N -—st g N9 N Zrq Ny 09 (N
f = No— 'I'ZC N[H.n(st)'*.3 2(st) ] iy [n(st)+9 2(st) }
! ni
i
!
| N IV
;};ci'i'l
i
i where a =—-—Nt—1—-—
f 1 (sT1)(t+1)
2 E N+i B
i’ @ s ¢ (a+1) (¢+1) ° =203 ..
3
‘ q =, (N-s)(N-t)
, ‘ NZ
m-l
i’ Am-l = (m-1)! ):, 1/j
¥ j=1
s

Table 4. Approximate formulas for means and mean-squared
errors of estimates.
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7.0 Confidence Intervals

Some measure of the dispersion of an estimate is necessary to provide
information on the range within which, given the outcome of any particular
trial, the true value of the quantity sought may be expected to lie. If the

estimate is biased and has a large variance we have no great faith that the

true value is close to the estimated value. Inserting the variance of the

estimate in Chebyshev's inequality affords us one way of quantifying the
spread. Another is available if we know the distribution of the estimate.
Still another method, useful when the distribution and variance of the esti-
mate are not known, involves the calculation of confidence intervals based
only on the known distribution of data values, and on the particular value
found experimentally.

Confidence limits a, and a, are two random functions of the estimate
under study and of an arbitrary non-negative constant € 1 for which we
make the following claim: If the true value of the quantity being estimated
is in the interval [al, az], then the estimate actually computed, or else

some value closer to the true value, would occur in (l-€ )100% of trials

made.

Each estimate is a function of one or more data values. Consequently

any function of an estimate can be expressed as a function of the data vari-
able c, or the set {ci} in a multi-trial procedure. The probability that a
particular value of an estimate will occur is identical with the probability
that the data points giving rise to that value will occur. Since the calcula-
tion of the confidence limits depends on the distribution of the data variable,

the limits for all estimates depending on a single value are identical, and

can be found by means of Eq. (9) in Section 7. 1.
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7.1 Confidence Limits for the Kstimates N0 and N

1

For a 100€ % confidence level our first requirement is to find an in-
terval enclosing a set of data values occurring in (1-€)100% of trials. One
way to do this is to replace the hypergeometric distribution which describes
the probability of ¢ by its normal approximation (mean = st/N, variance
o 2 = S_I\E . LN;Sﬁ{ZI'j_—Q ) . This done, we determine A such that (1-€ )100% of
all occurrences of ¢ will be within a distance of Ao from the mean. X is
tabulated directly in [6] p. 558, or can be found using a table of error func-

tions. An interval on the c-axis satisfying the stated condition is described

by

st - st

P{N-)\Uf_ci-ﬁ--}-)\w})l-e (8)

Our objective is to find the two values of N, Na. and N for which the

b?
value of ¢ found experimentally is at the ends of the allowed interval (see
Figure 4). The left inequality should provide the largest mean = st/N for
which ¢ is still in the interval, and therefore the smallest N, i.e., the

lower confidence limit. We might replace ¢ by st/N0 or by ﬁ%ﬁlﬂ -1

depending on the estimate of interest; either N0 or N computed from c¢

1’
would then be the fixed quantity rather that c¢. The procedure and results
would be identical, as noted previously, since we are still governed by the
assumed normal distribufion of ¢ as expressed in (8) rather than by the
distribution of No or Nj, neither of which is known.

If ¢ were constant we could immediately solve the two inequalities fo1
N, thereby finding the confidence limits with no difficulty. Since o is,

instead, a function of N, the procedure is not quite so straight-forward,

Details appear in Appendix 3 in which it is shown that the confidence limits
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at the 100€ % level are the 2 largest roots of g(N) = 0, where

2
g(N)=N3-%t(z+%)N2+i;—[st+xz(s+t)]N-(-sc—tk)z, (9)
<

and X depends on the preselected € .

Examples:

s =£=25
1) ¢c=4
N =3t- )56
S G
ks BN} 6> BF ot g
N, = o 1= 134 -@
3 10% confidence level: € = 0.1, X = 1, 6449 ;
i
: . 2
# g(N) = N> - 418N° + 29, 699N = 66, 064
1 Confidence interval = [88, 328]
g
! 50% confidence level: € =0.5, A =.6745
g(N) = N> - 330N° + 25, 303N - 11, 107
Confidence interval = [121,209]
J 2) ¢c=1
{ -
i No = 89
i
4 Nl = 84
1
; 10% confidence level:
; oy - S
’ g(N) = N - 213N + 9701IN - 21,575
. Confidence interval = [62, 148]

Confidence intervals are not unique. We can obtain limits more sym-

metrically placed about the estimate by choosing different values for the
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left- and right-hand occurrences of X in (8) and modifying the procedure
accordingly. In any event, the results are approximate since they are based

on the normal approximation to the distribution of c.

7.2 Confidence Limits for the Estimates ﬁo and ﬁl

= = — n
The random variable in the expressions for N0 and Nl is c=% 'Zl Tk
1=

¢ isanasymptoticallynormal random variable(central limit theorem) with
mean equal to the mean of each individual ¢, or st/N; and variance equal to

1/n times the variance of each:

=2 = t (N-s)(N-t
7%= var (@)= oy SRR

Determining A as before, we have

-

P{X -Ao<c<ST+Ao}>1-¢€

s
N+

w
Z|2

which leads us to another version of g(N):

2 2 2 2
gN=N? - (142 2t N o B o BEL A (M) g oy (BB, iRy ()
C nc C { o nc C =

Fore =0.1

g(N) = N2 - 192 N% + 8727N-15, 165

10% confidence limits are 70 and 120.
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The width of the interval is considerably less for 1\-'0 than for No

as anticipated from its smaller mean-squared error.

computed with « =7,
In fact, except for the effect of bias, the two widths should be proportional
to the respective standard deviations, the ratio being 1/dn . In this case
it is almost exactly that, the bias apparently playing a small role.

If, instead of using the central limit theorem, we use the normal ap-
proximation for each c; we have a slightly different variance ,

T 2.8 Lo N-t), (see [1]) leading to slightly different results:

nN NZ
S it LNE LT g R (st0)?
gN)=N" -Z2+==) N +5[st+—=(s +1) I N - == (10a)
€ nc C nc

The same example now gives limits of 71 and 118, almost identical with the

above.
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8.0 Other Models - Assumption of Variable Intrinsic Difficulty

All the estimates which have been examined were based on the assump-
tion of purely random choice: all errors were, one might say, laid out be-
fore any debugger who had but to close his eyes and choose. The discussion
on equal probability in Section 2 noted scveral varieties of challenge which
might be launched against that hypothesis, In this section we attempt to

describe models providing for variable intrinsic difficulty.

8.1 Model 2 - Variable Difficulty, Program Distribution Unknown

Make the following assumptions:

1) All bugs can be assigned at sight to categories based on difficulty
of discovery.

2) Within each category, errors are undifferentiated -- subject to
random discovery with equal probability,

Suppose there are k difficulty categories. Tag (or seed) and sample
as before. By virtue of assumption 2, ci/si=ti/Ni where t,, s;, ¢ are the
tagged, sampled and common bugs respectively in the ith category; some
may be 0. l\'i is the unknown number of program bugs in the ith category.
In principle, one may apply all Model 1 information to each category sepa-
rately, deriving category estimates using any estimator previously discussed.
For example, using N, for simplicity, we have category estimates
I\’oi= Siti/Ci’ i=1, ..., k, which can be found whenever S5 and ti are non-
zero. Since the more difficult categories will probably be empty at first,
we will not in general have an estimate of the total population. We can, in

theory at least, continue to test until enough errors in all categories are

We retain the convention that Noi= ZSit:i when ¢, = 0.
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available. However, a possibly more efficient way is to estimate whatever
categories appear in sufficient numbers after a brief test to make the esti-
mate reliable; continue debugging without testing* (i. e., with one debugger)
but keeping count of the number of bugs found in each category which has not
yet been estimated; and finally conduct similar tests to estimate the missing
categories when their appearance is frequent enough, adding the prewstimate
count in each case to get a number comparable with the initial estimates. If
the reason for making the original estimate is to gauge reliability at the end
of a finite debugging process, an error count -- though not by category --
would be required in any event in order to estimate how many remain still
undiscovered,

As an example consider Table 5 where 3 categories of difficulty are
assumed. The true figures in the total column are of course unknown. Two
sets of experimental values for c, are shown, In a) the c, were chosen at
their expected values for the true data F_‘(c.l) - siti/Ni; the category estimates
are therefore exactly right. In b) the values are not ideal. The r column
and the remaining estimates will be defined in connection with Model 3.

A major difficulty is that numbers may be small; getting large enough
samples within each category for low bias and variance may require exten-

sive testing.

8.2 Model 3 - Variable Difficulty, Program Distribution Known

A third assumption makes it possible to complete the estimate with onc
trial, from incomplete category estimates:

3) The distribution ratio of program errors by category is known.

This is suggested in order to avoid the cost of continued duplicate
debugging.

39

- . W ——




Category |Tagged |Sampled Total 4
f. S. ¥ N.
i | Type . ' ’ p a) Ideal | b) Non-ideal
1 |easy 400 480 .6 ] 1200 160 150
2 |medium 60 100 o3 600 10 12
3 |hard 40 0 = 200 0 0
total 500 580 2000 170 162
Model 2
_ 480 x 400 _ ... _ 480 x 400 _
a) Nol_——l()O = 1200 b) Nol—_—ISO = 1280
_100 x 60 _ _100 x 60 _
NoZ—_—IO o 600 NOZ——————-12 = 500
N no estimate N no estimate
o3 03
Model 3 - first procedure
_ 1200 _ 1280 _
N, (r))===g==2000 N, (r)) =—=g"=2133
_ 600 _ _ 500 _
NO (rz)— S i 2000 No (rz)— GG 1667
Average No=zooo Average No= 1900

Table 5. Example with errors differentiated by
difficulty (Models 2 and 3).
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8. 2.1 First Estimating Procedure - for Tagging or Seeding

The new assumption provides us with the ratio r, = Ni/N for all i.

Using any one of the category estimates of Section 8. 1 we find No= Noi/ r;.

In fact we have as many estimates of N as we have category estimates.
Table 5 contains an example of this estimating procedure.

No has the same ratio of bias and standard deviation to mean as Noi:

S e
E(L\o) T IE'(Noi)

1

s Yy e 0
\ax(l\o) = rz \ar(l\oi) ; 3 ("o) = T, g (Noi)
1

. 5 ) o
v(No) = rZ V(Noi) 2 i e(No) b ry u-e(Noi.
1

8.2.2 Second Estimating Procedure - For Seeding Only

With the third assumption we can also use the seeding variant to esti-
mate N directly without finding category estimates. Let the program have
E = El R T At Fk errors, Ei representing the number in the ith category.
Construct and insert a matching set of t = tl a5 o A tk errors, ti/t = Ei/ E,

t.1 # 0. The total number of errors after sceding is N = Nl T e BN

k
where N. = E. +¢.
1 i i
Ni Ei ti
d _— = — = — s N - ing ¢ 11
an N 5 t from the matching condition.
The debugger finds s = 5 AR Sy bugs, where s, may be 0.

If the seeding approach is used, the ratio r; is computed with the seedecd
bugs included in Nj. The seeded bugs neecd not be distributed among the
categories in the same proportion as the original program errors.
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Since the seeded bugs are assumed indistinguishable from the original, we

can again reasonably expect that

(S L

i G

s. N.
i i

where now c, and s, may jointly be 0, but t. # 0.

The total number of seeded bugs uncovered is

t.
i i i i

We are therefore led to the same ad hoc estimate as for the equal probability

st
case, N =

< -

The c, are hypergeometric by virtue of assumption 2, but the distri-
bution of their sum c¢ is unknown, although asymptotically normal. The
Taylor's series method (Appendix 2) with normal approximation for o (or
only for ¢ if k is large) can be used to find the mean and mean-squared
t

2 s :
error of the estimate ol Mean and variance of ¢ are the sum of the means

and variances of ci:

55 %% _ st
e et M =L N
i i={ i
s.t. (N,-s,)(N, -t,)
var(ci) = -ﬁil . _l__l_z__.l_i_ var (C) = i var(ci)
i N i=q

i
Higher moments are found from the normal approximation

Mylc) =0
2
3 [var(c)]

My ()
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Table 6 shows an example of this approach with ideal and non-ideal

experimental values.

matches the true distribution exactly, )

(Both are ideal in the sense that the seeded set

Category | Seeded|Sampled|Total s
i|Type £, s, N. 1 =
i i I T Tdesilb] Hon-idesl | a) N=25-2005100

c 29

1| easy 60 480 1200 24 20 =2000

2| mediun] 30 100 | 600 5 6 b) N = 280x100

3lhard 1o 0 200 0 0 =2231

total 100 580 2000 29 26
Table 6. Proportional seeding example with errors

differentiated by difficulty (Model 3).
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9.0 Conclusions

The modified maximum likelihood estimate considered under the
equal-probability assumption is the estimate of choice in a single-trial test
if the total number of errors exceeds about 50; its bias is practically zero
and its variance reasonable. Its variance was found, furthermore, to vary
in predictable ways with various ratios among error population, sample
size and size of tagged or seeded set. As a consequence it is possible to
design a seeding/tagging test optimally for the desired precision. Graphs
make the choice of s and t a simple procedure. Estimates of larger values
can be made in relatively less time.

For N <50 a decision must be made between Nl' and No with its
higher bias but lower mean-squared error.

Multi-trial procedures can decrease the dispersion still further. Of
the two types considered, the better one replaces the random variable c by
its average over the several trials.

A brief treatment of estimates for models other than equal probability

indicates that the estimates are closely related to those for equal probability.

In summary, estimates of adequate accuracy and precision are avail-

able. The viability of seeding/tagging reliability tests rests on the answers

to the practical questions which can be raised.
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Appendix t. Derivation of Second Order Approximations for E(No)’ V(NO)
: and V(N1 ).
A. Derivation of Eq. (1)
The exact expression fcr E(No) derived by Chapman consists essen-
tially of the first m terms, m arbitrary, of an infinite series plus a
remainder term. It can be written in the following form:
' 2 x4 G "m
= - —_— _ — - | —
E(N_) st { (1 -K) [a1+rl a2+2r1a3+6r1 @+t (m-1)! r, am]
i P T r i
i
‘ +-a—0[1--;2—a2—2r—3a3-... - (m-1)1-2e_]
1 1 1 1
+(t-POER_[s#0)}
4 1
" N-s-t
) N+1 Po for s+t <N
i where K =
i 0 otherwise
el
1 7 (s+1)(t+1)
- N+i .
% = ) % or iz
i i-1
{ r. =1 - ) P(c|N+i, s+, t+)
. | 1
J c=0
i
i R_= remainder term
¢ m
3
‘ To derive his first order approximation Chapman assumes that for s—l\}:_>_10,
4 the following approximations hold:
: g 4
] P =0, K=0, R_=0, all r =1, all a,= ()
0 1 1 st
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The result is

2
. N 2
E(N V=N [1+=0+2 &5 ]

N st
st’ N °

i
The critical assumption is a, = (-g-) , which is close for N, s and t very

from which it appears that the bias depends only on the ratio

large but otherwise introduces considerable positive error, increasing as N
gets smaller.

The remaining assumptions seem justified:

1. Since the series converges, Rm—-O.
i 2. Po is generally small except for N very large and -S—l\% very small

simultaneously.

o small means that the mean of the distribution of ¢ is close to the origin,

.

! and N large means that for a given value of % the variance is large since
! - o
i QN—(S-#%Q — 1. Large variance implies relatively high probability at ¢ =0.
4‘ Some order-of-magnitude values are:
st
3 ~ N PO
\ 15 100 | 10712
‘ 13.75 200 | 1078
5 -11
q 13.75 100 10
s 13.33 27,000 | 107°
b 10 100 | 1077
-4
6.25 100§ 10
| 100, 000 0.4

:

!
\ z i ] 6] 0.2
‘ 46
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We can therefore assume, except where signalled by small ST\It- . that Po'-: 0.
3. It follows that K, which is less than Po’ is approximately 0 and
1-K=1.
4, For i small the probabilities in the expressions for r, are in the
st

tail of the distribution, and are small for reasonable N (see Figure 1).

Therefore ri =1 and — = 1.

5. In most cases, the second term is very much less than the first

term and can safely be ignored, The first term is dominated by a, for

1
reasonable values of ENE as the definition of @ shows. The ratio of the
second term to the first is about -—03 . For T\E exceedingly large a, = -sll; is

P 5 2
very small and --92— can be significant. However, if Po =10 5 and %tr-': 10,
a
P 1
o} -4

-—-2-2 10 . That is, we make an error of about .01% in E(,No) by neglecting

E ) af
’ the second term.
i If we make only the assumptions discussed above omitting the a;
‘, assumption, we are left with
N )= + -1)!
E( 0) st [ar1 +az Za3+.._ + (m 1).am]. (1)
B. Derivation of Equation (1a)
2 N , . i
i Let & = = Define k, fori=1, 2, ... by a. =Kk«
b [o} st 1 1 10
'f Rewrite Eq. (1) as
'
% E(N )= N[k, +k, () +2k R s pmeny il
@ . T+ A e’ | arw T BR T8t )

It remains to be shown that

5 1 +1/N
t T Fi/s)1 + 176 l

k
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which is done by factoring a = from @ and that

w
pes

¢ 1+i/N 43
sk Trilon+ifn * 158 % .o

The form holds for i = 2:

e N+2 _ ., N _1+2/N
27 % (st2)(t+2) T %ot st (1+2/s)(1+2/%)

Gy 9 1+2/N
T % ft @+2/s)1+2/t)

. B 1+2/N '
: k2 = kl (172/8)(1+27%) * and the general form follows readily by

induction.

C. Derivation of Equation (3) and (3a)

The exact expression for V(no) has a structure similar to that for

o
E(No) containing the expressions a, r—1 1-K), P

, and R' (remainder
o m

term somewhat different from Rm). Chapman's approximations lead to
2 3
e N N N
VE =N SR P 38
In accordance with the preceding discussion, we permit all but one

approximation to stand to arrive at Eq. (3) and, with the same transforma-

tion as before, at Equation (3a).

D. V(Nl)

An exact form for V(N1 ), derived using Chapman's method, is

gy = R

5 e S A

|
|
|
|
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VN ) 2 B (N ) (N+2) (1_K,[f£+:i N+3 T4 (N+4)(N#3)
Ny =72y (+2) ‘ r, r, BP3EFS) O (FE (s T3

r
m (N+m). .. (N+3) 2 2 ] .0y 2 '
+ (m-2) !—-—ri Py g +3)]+(s+1) (t+1) (1 K)E(Rm )-(N+1)"(1-2K)

The same approximations as before reduce this to

(1) (tH1) (N+1)(N+2) N+3 (N+4) (N+3)
Vi) = (s+2)(t+2) [‘ t T3 er3) T 2 (7a)(t+4)(sF3)(EF3) Tt

(N+m). .. (N+3) 2
+ k=2 pt (s tm). .. (t+3)] ~ ()

2
V(N,) = (et et [az+a3+2a4+...+(m-2)!am] - (N+1) (5)

which can also be written as

2 2
s R N, N ! Nm-2
vy (e 02000 P [y k)2 F Ry Jy 2, G0 Hme2) T D) ] s
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Appendix 2, Taylor's Series Derivation for E(N) and V(N)

A. Let N be any estimate of N. N is a function of ¢, say w(c). Let

v(c) = [w(c) - N]Z. Then E[w(c)] =T w(c)P(c) and E[v(c)] = T v(<)P(¢) are

C <

-

respectively the mean and the mean-squared error of estimate N. Conse-
quently any method for evaluating the expected value of a function of a ran-
dom variable can be used to find both E(l:l) and V(I:I).

B. Let the mean of ¢ be m, its variance be JZ and its kth central
moment , E[(c—m)k], be Hye Let g(c) be a function (we will later let it be
both w(c) and v(c)) which can be expanded in a Taylor's series about m:

2 T 3
g(c) = g(m) + (c-m) g'(m) +1“—2mT)—g"(m) ¢ de 3‘?’ S .

Multiply each term by P(c) and sum over all ¢. The result is
g" S 3
E[g(c)]=g+g'E(c—m)+2! El(c-m)”] + 37 E[(c-m)7]+..

where g and ite derivatives are evaluated at c=m ,

E(c-m) =0

E[(c—m)z] = o2

Ef(c-m)’] = uj .
Then

2 i %
E[g(C)]:g+22_..gn+_6_3gn|+4_‘§g(4) 5

If a truncated portion is to be a reasonable approximation of E[g(c)],

the series must converge, and rapidly. If g(c) does not vary too much near

m, the derivatives will be small. But the (c-m)k P(c) terms must not be
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too large; this requires that the domain of ¢ not spread too far from m
and/or that the remote points have very low probability.
C. We find E(N) by replacing g(c) by N = w(c)

2

~ K U
E(N):w+92—\v"+T3w"'+Z%w(4) (12)

where w, w' and w(4) are evaluated at c =m.

We find V(N) by replacing g(c) and its derivatives by v(c) and its

derivatives. Evaluating at m gives

v = (w—N)Z

v! = 2(w-N)w!'

v' = 2(w-N)w'" + Z(W')2

v'" = 2(w-N)w"' + bw'w!"
(4)

Z(W-N)W(4) + 8w|wll| + 6(W")2

Substituting these in Eq. (11) we find

-1 2, 2 2 : H3 ‘ . :
VIN) = (w-N)" + ¢ [(w")" + w"(w-N)] + 5= [Bw'w" + w'"'(w-N)]

m
PR

o [awwaswn)? - w® ), (13)

D. Application to Estimate No

The mean and variance of ¢ are known. The higher moments are not

readily available but By can be calculated from the characteristic function
of the hypergeometric distribution or from the formula for skewness [2].
py was in fact derived by the writer and substituted in Eqs. (12) and (1 3) to

write expressions for E(NO) and V(No). However the results in specific

51

P e i o
T S~ . : . ‘-;vluq»o-“wwﬂ.
AR siiormat i 10 oG G v ‘ TR A . :




cases were uniformly low indicating the need for more terms. We can
avoid deriving p4* by using a normal approximation for c[1] for which
higher moments are more accessible.

In that event

_ St
N
2 st (N-s)(N-t) _ st
gr = e e =37 49
! N NZ N
i (14)
)
i My = 0
8 4 £.2 .2
\ uy =30 =37
: ) _(N-s)(N-t |
where q = 2
! For N
! w(c) = st/c w=w(m) =N
i
witlc)i= -st/c2 w' = -N(N/st)
w'l{e) = 251:/03 wl = ZN(N/st)2
wit{c) = -(Jst/c;4 wift = -6N(N/St)3
we) = a1st/c wl® = 41nev s
4 Substituting in Eqs. (12) and (13), we obtain, finally,
4
1
£ 00 NG 2 N2
? E(l\o) = Nft+q (st) + 3q (st) ] (2)
1
v o ol N 2. N2
VIN )= N"[q (3p) + 99 C3)7) (4)
§
L]
' v T . st (N-s)(N-t) (N-2s)(N-2¢t) ;
Uy was found to be N NIN-1) N(N-2) but p,4 does not follow
the pattern of "2, o it is probatly the sum of such a term and another.
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E. Application to Estimate ﬁo

The form of N = -?rt where ¢ = 1 c. is identical with that of N .
o < n i o

M

3

1

The only difference is that the random variable is ¢ rather than ¢ the
quantities m, xrz', B3 My in Eqgs. (12) and (13) must therefore be mean and
central moments of c. As the average of n random variables with identical

distributions:

E(S) = E(c) = f’N—t

i) = -:; e}

Under the normal assumption for c, C is itself normal, and *
2= st
: o (C) = q
| palc) =0
|
4, — 3 st2 2
| cl=3g (c)=—"r
| By ( e i ) a

We need only replace q by % in Eqs. (2) and (4) to get the corresponding

expressions for No:

e 2
e q N, q (N,
E(N) =N[1 + o Gt 3 . (st) ] (6)

2

2
(N N N ,2 -~
VING) = N 98 7] (7)
n

5




Appendix 3. Confidence Intervals

A. Confidence Limits for N0 and N1

Assume that ¢ has a normal rather than hypergeometric distribution.

: 2 : g st : =
The mean of the normal approximation [1] remains N and the variance is

only slightly changed: ”2_ = %t . _(N_-s)_%ﬁ:t_) . For a 100¢ % confidence level,
' N

let Ao be the half-width of a symmetrical interval about the mean containing

(1 -€ )1 00% of all occurrences. Then

{—-kaxg<ﬁ+7\cr}=1-€ (8)

Known quantities are s, t, A, € and the experimentally determined c. The
only unknown, when ¢ is replaced by the square root of «rz as given above,

is N. From the left-hand inequality, we get

st gN-sHN-t[ 1 st 2 st
N szN) - 2P

st(N-s)(N-t) 21—2 [(st)ZN + czN3 = 2cstN2]
A

2
e N3 - ?‘(ZCZ“ + st) + N[( + ot 4 stz] - (st)? <0
b A
3 .25 xS st,?
g(N)=N" - N (2+—)+N—[st+7\ (s+t)]-( <0 (9)
C

From the right-hand inequality, we have
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S -8 - 2
%13 N b)ZN £, 4 2 + 2 . ZL(%E)]

2
>

which is identical with the second expression above and therefore leads to
the same result, namely g(N)<0 where g(N) is the polynomial in Equation (9)

Since g(N) < 0 represents both inequalities in (8), it is satisfied by all
values of N in the confidence interval. The lower limit Na of the confi-
dence interval is characterized by the fact that smaller values of N are not
in the interval and therefore do not satisfy g(N) < 0 but larger values are
and do. Therefore Na is the next integer at or below a solution of g(N) =20
such that g(Na -1) >0 and g(Na +1)<0, i.e. near Na.' g(N) changes from
positive to negative with increasing N. Similarly the upper limit Nb of the
confidence interval is the integer at or just above a larger root of g(N) =0
where g(N) changes from negative to positive with increasing N. In other
words, the confidence limits are approximately two roots of g(N) =0
between which g(N) is negative. Inspection of g(N) tells us that g(0) is
negative and that its derivative at 0 is positive, From Descartes' rule of
signs, we know that g(N) = 0 has no negative and either one or three positive
roots. From the genesis of the equation we know it has two positive roots
since the interval limits do exist and are distinct. Therefore it has threc
real roots, all positive., It is apparent that g(N) has the configuration

shown in Fig. 5 and that the confidence limits are the two upper roots,
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Figure 5. General Configuration of g(N)
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B. Confidence Limits for ﬁo and N1

We begin with a set of experimental values {ci:i SR S

|
= = = 1 n
mates No and N1 depend on the random variable c = = > <y which is as-

o X _ 8t . =2 _ st (N-s)(N-t)
ymptotically normal with mean = N and variance o = AN N(N-1) o Ox,

— ———

R

if we use the normal approximation for each c,, o° = S L loEi o) 3
i nN N2

Equation (8) becomes
p{;—t~x3525%+x3}=1 big
! Using the first form for &_2, the left-hand inequality leads to:
5
[}

T " .
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o

S_t_\JLL N-s)(N-t) .=
N nN  N[N-1) =°©
2
2 st (N-s)(IN-t) st = 30 = st
AT AN RO 2N tleY -Zey

225t (N2 - sN-tN+st) > (st)>n(N-1) +nN2(N-1)22 - 2staN(N-1)c

NBnE2 - N2(n€2+2 stn::-+7lzst) +N [(st)2n+23tnz+7k2 st(s+t)]

- (st} A% < 0

. 2 DESTCRN. gri
=N N [+ 222 en D e SR 2 X (0 gy
(= nc C nc c

The right-hand inequality leads to the same form. The reasoning described
in part A of this appendix therefore establishes the confidence limits as the i

two largest roots of g(N) = 0 where g(N) is as defined in Equation (10).
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Appendix 4. Miscellaneous Proofs

{ +i/N 1 +i/N
& Show that Tro—rpererin, & 2
(1t +i/ Jst)

2 2 2
(a-b)” = a~ - 2ab+b™ >0
a2+b222ab

2 2
Let a“ = ¢, b® = d; then ab =ch
c+d22ch

Add {1 + cd to both sides
t+c+d+cd>t +2Jcd +cd
(1+c)(1+d)i(1+‘lﬁ)2
Let c = i/s, d = i/t

Then (1 +i/s) (1 +i/t) > (1 +i /D)2

{ +i/N i +i/N
And : : . :
(t +ifs)i1 *+ift) = (1 +1i/ st )2

which was to be proved,
B. Show that V = var + (bias)2

Let N be any estimate of quantity N, Let m and b be the mean and

bias respectively of N: m - N = b and E(N - m) = 0

z = 2 A ¢
V(N) = E [(N - \')_] = B {[(N -m)+ (m - \I)]Z}
- 9 i N
=E[N-m)°]+(m-N)"+2m-N)E (N - m)
= var (N) + b
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METRIC SYSTEM

BASE UNITS:
_ Quantity Unit SI Symbol Formula
length metre m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd
SUPPLEMENTARY UNITS:
plane angle radian rad
solid angle steradian sr
DERIVED UNITS:
Acceleration metre per second squared m's
activity (of a radioactive scurce) disintegration per second (disintegration)/s
angular acceleration radian per second squared rad/s
angular velocity radian per second rad/s
area square metre m
density kilogram per cubic metre kg/m
electric capacitance farad F A-sV
electrical conductance siemens S AN
electric field strength volt per metre Vim
electric inductance henry H V-s/A
electric potentia) difference volt \" WA
electric resistance ohm VIA
electromotive force volt \' WA
energy joule J N:m
entropy joule per kelvin JK
force newton N kg-m/s
frequency hertz Hz (cycle)'s
illuminance lux Ix Im/m
luminance candela per square metre cd/m
luminous flux lumen Im cd-sr
magnetic field strength ampere per metre A/m
magnetic flux weber Wb Vs
magnetic flux density tesla T Wb/m
magnetomotive force ampere A
power watt w Jis
pressure pascal Pa N/m
quantity of electricity coulomb C As
quantity of heat joule ] N-m
radiant intensity watt per steradian Wisr
specific heat joule per kilogram-kelvin : Jikg-K
stress pascal Pa N/m
thermal conductivity watt per metre-kelvin Wim-K
velocity metre per second ms
viscosity, dynamic pascal-second Pa's
viscosity, kinematic square metre per second .. m's
voltage volt Vv WA
volume cubic metre m
wavenumber reciprocal metre . (wave)/m
work joule ) N:m
SI PREFIXES:
Multiplication Factors Prefix SI Symbol
1 000 000 000 000 = 1012 tera ¥
1 000 000 000 = 10" Riga G
1 000 000 = 10* mega M
1000 = 10" kilo k
100 = 107 hecto* h
10 = 10! deka* da
0.1=10"" deci*® d
001 =102 centi* «
noor - 107 milli m
0000001 - 10°* mic.ro "
0.000 600 001 10" nano n
0 000 000 D00 00T - 10 ' pico )
01100 000 000 000 001 10 femnto ,
0.000 50O 000 OO0 000 HO1 - 10 '™ atto a

* To be avoided where possible
S GOVERNMENT PRINTING OFFICE 1977-714-025/115
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MISSION
of
Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(c3) activities, and in the ¢? areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and

compatibility. %
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